Chemoselective Of Aromatic Compounds Lab Report Organic Chemistry Lab Report

1624 words - 7 pages

Casto 1
Morgan Casto
Dr. Hillwig
Chemoselective, Syntheses of Natural Fragrance and Perfume Additives Lab Report
2/26/19
Introduction:
One of the most important concepts within chemistry is the chemoselectivity of
reactions. This concept deals with a how reagent will choose a functional group to react with,
resulting in the formation of the major product. Our lab studied 6 reactions: three oxidation and
three reduction of the three compounds, whose structures are shown below.
Figure 1: Structures of the three starting materials: citral, geraniol, and carvone.
A type of oxidation reactions that was looked at were epoxidation reactions, which
removed a double bond, and replacing it with an oxygen of citral and carvone. Another type of
oxidation reaction is the copper oxidation of geraniol that starts with an already present alcohol
group, which loses its hydrogen and creates a carbon-oxygen double bond. In the reaction carried
out in lab, the alcohol group is attended to a primary carbon, which show a different result. When
the copper bromide reacted with geraniol, the reaction will be like a reaction carried out with
PCC. The reaction schemes for these reactions are shown below:
Casto 2
Figure 2: Reaction schemes for the oxidation of citral, geraniol, and carvone, showing the
reagents and products for each reaction.
In the second week, the three reactions were reduction and hydrogenation reactions. The
first of these reactions was a sodium borohydride reduction of citral, which reduces an aldehyde
or ketone down to an alcohol. A second reduction reaction performed was the Clemmensen like
reduction of carvone, which uses zinc to reduce an aldehyde or ketone to an alkane. Finally, the
last type of reaction was hydrogenation of carvone using a platinum catalyst, reducing any
Casto 3
double bonds. The reaction schemes for these three reduction and hydrogenation reactions are
shown below:
Figure 3: Reaction schemes for the reduction and hydrogenation reactions carried with carvone
and citral
Casto 4
Week One Oxidation Reactions:
Citral and H2O2:
The product of this reaction is formed when NaOH acts as a catalyst, deprotonating the
hydrogen peroxide, and creating an epoxide where the double bond closest to where the aldehyde
was (Cunningham 323). Evidence for this can be found within the IR spectrum of the product
because of the strong peak around 1725 cm-1 that is a C=O stretch, indicative of the aldehyde
group. Also, around 3000 cm-1 that indicate an alkane C-H stretch. The C13-NMR also shows
proof of the aldehyde, with two peaks around 200 ppm.
Copper Oxidation of Geraniol:
The conversion of an alcohol to an aldehyde with the use CuBr is a two-step oxidation
reaction. The IR spectrum of the product shows evidence that the aldehyde was formed because
of the strong peak around 1700 cm-1, which indicated a C=O stretch. Furthermore, a cluster of
peaks around 3000 cm-1 provides evidence for the presence of alkane groups within the product.
According to the Journal of Chemical Education, a similar reaction was carried out with benzyl
alcohol and CuBr, bi-pyridine, methylimidazole, TEMPO, and acetone, which yielded a product
that had an alcohol group that was converted into an aldehyde, like what was seen in the copper
oxidation of geraniol (Hill 103).
Carvone with Peracetic Acid:
The last oxidation reaction performed in lab was the reaction of carvone with peracetic acid,
which is also an epoxidation reaction. The epoxide is formed with the double bond at the bottom
of the ring, since it is more stable. The IR spectrum shows a string peak at around 1670 cm-1,
Casto 5
which would represent the ketone group that is attached to the ring. In addition, around 3000 cm-
1, there is a group of peals that indicate an alkane group. The proton NMR for this product shows
evidence for ketone between 2 and 3 ppm, shown in the data as a cluster of peaks. A peak around
6.7 ppm indicates the double bond in the ring, and the oxidized double bond is represented by a
peak around 4.5 ppm.
Week Two Reduction Reactions:
Citral and NaBH4:
The reduction of citral using sodium borohydride converts an aldehyde to an alcohol. The IR
spectrum for the product of this reaction shows this alcohol at around 3500 cm-1. The peak for
the C=O bond is around 1700 cm-1, and is small, which shows that it was involved in the reaction
and was reduced. The C13-NMR for product of this reaction is further evidence that the C=O
bond was reduced. In addition, when looking at the C13 for the staring material, citral, there is a
peak at about 200 ppm for an aldehyde, which is no longer present in the product spectrum.
According to the Journal of Organic Chemistry, sodium borohydride has been used in similar
reactions to reduce ketones and aldehydes to alcohol groups (Johnson and Rickborn 1043).
Clemmensen Type Reduction of Carvone:
Carvone can be reduced using methanol, acetic acid, HCl, and zinc converts the ketone on the
ring to an alcohol and reduces the double bond in the ring down to a single bond. This is because
the alkene was the least stable. The IR spectrum of the product has a peak between 3500 cm-1 and
3000 cm-1, which is indicative of the alcohol as it is an O-H stretch. Peaks around 2800 cm-1
represent the alkane groups. The proton NMR spectrum for the product has a peak that represents
Casto 6
alcohol group formed from the ketone at around 7.5 ppm. Another peak at around 6.8 ppm is the
reduced double bond. According to an article by Kelly and Deeble, the addition reactants had
part in reducing the alkene of the ring (Kelly and Deeble 1107).
Hydrogenation of Carvone using a Palladium Catalyst:
This reaction was the final reduction of carvone with palladium. This reaction reduces the ketone
to an alcohol, and reduces the double bond at the bottom of the structure. However, because we
did not re-pierce the septum of the reaction flask, our H-NMR is inconclusive because it presents
a peak for the alkene portion of ring, which should not be in the product. This is due to an excess
amount of hydrogen. In the H-NMR for the starting material, carvone, there is a peak around 7
ppm that corresponds to the alkene portion of the ring, if the product was correctly formed, this
peak would no be found within the product data. However, looking at our product data, that peak
is still present due to this error. The product that should have been formed in this reaction is
different from that of different hydrogenation of carvone that was carried out in a different
experiment. In that experiment, the alkene at the bottom of the structure is reduced, but the
ketone, however, was not. This contrasting point may have been due to the use of different
catalysts. The reduction for this reaction used a paladdium catalyst, but the experiment outlined
in the academic paper used Wilkson’s catalyst, RhCl(PPh3)3. This resulted in only the least
hindered alkene, the one at the bottom of the structure to be reduced, and the reaction stopped
there (Kelly and Deeble 1107).
Casto 7
Comparing Reactions:
Two of the oxidation reactions formed epoxides: the oxidations of citral and carvone.
Both molecules are structurally different, but both form epoxides from an alkene within their
structures. The citral oxidation product was due to nucleophilic epoxidation because the sodium
hydroxide acts as a catalyst and deprotonates hydrogen peroxide, increasing it’s nucleophilicity,
leading to formation of the epoxide (Cunningham 323). In the oxidation of carvone, the peracetic
acid attacks the alkene at the bottom of the structure because it is the most stable alkene of all of
them.
Reading and Reflection:
Reading #1: Chemoselective Reactions of Citral: Green Synthesis of Natural Perfumes for
the Undergraduate Organic Laboratory by Anna D. Cunningham, Eun Y. Ham, and David A.
Vosburg
When comparing the results of the exact same reactions shown in the academic paper, the
product of the citral oxidation with hydrogen peroxide is accurate. Both reactants utilize the
same reactants: the catalyst, NaOH, hydrogen peroxide, and methanol. As previously stated
above, the hydrogen peroxide was deprotonated by the sodium hydroxide, which then leads to
the formation of the epoxide. Within the academic paper, the reaction was carried at a set
temperature of 0° C; however, in lab, we did not use a set temperature, rather the solution was
kept on an ice bath to cool the reaction. The reaction within reading also proceeded faster than
reaction in lab.
Casto 8
Reading #2: Hydrogenation of Citral over Activated Carbon Cloth Catalyst by Jeanette
Aumo, Susanna Oksanen, Jyri-Pekka Mikkola, Tapio Salmi, and Dmitry Yu. Murzin
The experiment performed in this paper was the oxidation of citral and the resulting product was
like one formed in this lab experiment. The citral hydrogenation in the academic paper results in
several products, one of which is geraniol, which is what citral can oxidize to. However, the
catalysts used differ. The reaction presented within the paper used Ni/ACC and Pt catalysts,
while the one performed in lab used sodium borohydride.
Casto 9
Works Cited:
Cunningham, Anna D, et al. “Chemoselective Reactions of Citral: Green Syntheses of Natural
Perfumes for the Undergraduate Organic Laboratory.” Journal of Chemical Education,
vol. 88, no. 3, 2011
Hill, Nicholas J, et al. “Aerobic Alcohol Oxidation Using a Copper(I)/TEMPO Catalyst System:
A Green, Catalytic Oxidation Reaction for the Undergraduate Organic Chemistry
Laboratory.” Journal of Chemical Education, 2013.
Johnson, M Ross, and Bruce Rickborn. “Sodium Borohydride Reduction of Conjugated
Aldehydes and Ketones.” The Journal of Organic Chemistry, vol. 35, no. 4, Apr. 1970.
Kelly, Lawrence F, and Geoffrey J Deeble. “Selectivity in Organic Synthesis: Chemo- and
Regiospecific Reductions of Carvone.” Journal of Chemical Education, vol. 63, no. 12,
Dec. 1986.

RELATED

Extraction of benzoic acid and benzocaine - Organic Chemistry - Lab report

663 words - 3 pages Extraction In this lab, extraction was used to separate and purify a mixture of benzoic acid and benzocaine. For a successful extraction process to occur the liquids must obtain the following properties. The liquids being used must be insoluble when mixed together therefore forming layers, acquire different densities to allow separation, have different solubilities, and the liquids should not react with the compounds to allow isolation of the

Cation Lab Report for Chemistry class - Chemistry 151 - Assignment

715 words - 3 pages Name: Nhung Ly Date: 05/05/2018 Group I Cations Abstract: Qualitative analysis is a branch of analytical chemistry that deals with the separation and identification of the components of matter - what is present, not how much is present. There are many common qualitative analysis schemes that separate the ions into groups based on selective precipitation. Although sophisticated instrumental techniques have replaced much of the traditional wet

Heat of Combustion of Solid Magnesium using Hydrochloric Acid and Magnesium Oxide in a calorimeter. - AP Chemistry - Lab report

634 words - 3 pages Free ) Mg (s) + 2 HCl(aq) → MgCl​2​(aq) + H​2​ (g) (3) 2H​2​(g) + O​2​(g) → 2H​2​O(l) ΔH for this reaction ​-571.6 kJ. In this experiment heats of reaction for equations (1) and (2) will be determined. Pre-lab exercise In the space provided below, “​rewrite”​ and combine equations (1), (2), and (3) to obtain the desired target equation. (1) ​MgCl​2​(aq) + H​2​O(l) → MgO(s) + 2 HCl(aq) (2) ​Mg (s) + 2 HCl(aq) → MgCl​2​(aq) + H​2​ (g) (3) ​H​2​(g

Alka Seltzer and the Ideal Gas Law - Troy University Chemistry - Lab report

595 words - 3 pages Alka Seltzer and the Ideal Gas Law Purpose – When Alka Seltzer reacts with water, CO2 gas is produced. In this lab, you will collect the gas given off from this reaction. Using the mass difference, you will determine the mass lost by the process, and thus the mass of CO2 produced. You will use the ideal gas law to calculate the number of moles of gas produced, and from this, the molar mass of CO2. Materials: Erlenmeyer flask, Alka Seltzer

Chemical Reactivity of Chemicals - Chemistry Grade 11 - Lab

546 words - 3 pages Free Chemical Reactivity of Metals Purpose ❖ The purpose of this lab is to study the chemical reactivity of five different metals and discover the periodic trend for the chemical reactivity (most reactive to least reactive) of metals using the observations from the lab. Hypothesis ❖ My prediction was that the metal that is farthest down and to the left on the periodic table (Potassium) will be the most reactive and the metal farthest up and to the

Calorimetry lab - Abstract and Prelab - Chemistry - Assignment

895 words - 4 pages NFHS – Chem I - HONORS Calorimetry Lab – Specific Heat of a Metal Calorimetry Lab – Specific Heat of a Metal Abstract Chemists can identify substances on the basis of their chemical and physical properties. One unique physical property of a substance is the amount of energy it will absorb per unit of mass. This property can be measured quite accurately and is called specific heat (Cp). Specific heat is the amount of energy measured in joules

chemistry lab: ferrate both weeks - college general chemistry - Assignment

692 words - 3 pages Free reaction decreases. Correlation of data and hypothesis: As the DTZA was either diluted or concentrated, the line of best fit will also follow the DTZA to see if it increases or decreases. The ferrate and DTZA went back and forth because when the DTZA increased, ferrate decreased and vice versa. REFLECTION I was the manager of my group for this experiment. I explained them the procedure and got the materials we would need for the lab. My partners

Bio Lab Report

660 words - 3 pages Free Lab Report: Diffusion and OsmosisIntroduction:Atoms and molecules are constantly in motion. This kinetic energy causes the molecules to bump into each other and move in different directions. This motion is diffusion. Diffusion is the random movement of molecules from an area of higher concentration to an area of lower concentration. This will occur until the two areas reach a dynamic equilibrium.Osmosis is a special kind of diffusion in which

Lab report on lakes and health of rivers - AP environmental - lab report

584 words - 3 pages the pH of water should be 7, which is exactly what the pH of the Rose River was when tested. The dissolved oxygen, saturation, nitrate, and phosphate levels were slightly low but still in the ideal range for a healthy river to host a variety of species throughout. From the analysis of all this data collected, we were able to confirm our hypothesis is healthy. Conclusion: This Lab has allowed the students who visited the Rose River a view on what

Lab report 4 - chocolate cookie experiment - Prevention 1 - Lab report

450 words - 2 pages mouth. Other than that the lab was a learning experience. Application: (2) How does this apply to the practice of dental hygiene? Reference your course readings in this part of the report. This applies to the practice of dental hygiene because as hygienists, our job is to exercise oral hygiene assessments and to maintain patients oral health. In doing so with relation to today’s lab, disclosing dental biofilm and flossing is one of the methods. In

Environmental Science EVR1001 Lab Report - EVR1001 - Lab Report

869 words - 4 pages EVR1001L-0001 Fall 2017 Lab 8: Green Building Lab Report Gianna Stern April 29, 2018 Methods (15 points): To start this lab, the experimenter traveled to a cul-de-sac in a neighborhood full of houses. The purpose of this lab is to enter a vacant house, explore the insides, scan the living areas for opportunities to improve environmental friendliness, in other words, make it more “green.” Firstly, the experimenter had to find a vacant house and

deforestation and watershed lab report - science-grade 9 - lab report

3241 words - 13 pages Syed 2 Aminah. Syed SNC 1D1 Mrs. Carson Wednesday, December 19 2018 Deforestation and Watershed Lab Introduction: An ecosystem is the region, in which many living organisms coexist and interact with each other as well as with the abiotic factors in the environment. Most ecosystems typically consist of both plants and animals. A watershed, also referred to as a drainage basin, or catchment is an area of land that captures and channels

report about biology lab birds lab lab lab lab lab alibi alandj hdsjkhd bdsvkfb bfdskbfks - biology - biology

1424 words - 6 pages Natural Disasters Risk Report for Address, City, State ZIP INTRODUCTION Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum

Comparison of Strength and Power - Exercise Physiology - Lab Report

1425 words - 6 pages The Assessment of Strength and Anaerobic Power Abstract The aim of the lab was to determine if relationships exist between strength and power assessments, while hypothesising that there is in fact no correlation. 28 healthy university students completed four testing batteries, consisting of both male and female. The results found that no strong correlations existed within the testing measurements. Limitations of the study can include

The Effects of Smoking on Lung Tissue - Biology - Lab Report

2559 words - 11 pages produce mucous effectively (Tallhout et al., 2011). The smoke also slows down the ciliary movement, meaning irritating particles including tars remain in the airways for long periods of time. As tar contains many carcinogenic compounds, they can cause mutations and a great deal of damage if they remain in continuous contact with the cells of the lungs. In response to this presence of excess irritants, mucous cells in the lungs become stimulated to